
A Rust Library For Manipulating
Sentential Decision Diagrams

Bc. Josef Podaný, advised by RNDr. Samuel Pastva, Ph.D.

Faculty of Informatics, Masaryk University

February 3, 2025



Motivation

Motivation

What is knowledge compilation?
Knowledge compilation is the process of translating a knowledge
base into a target compilation language [3]
Target compilation language should be tractable and succinct

Why is it important?
Model-based diagnosis & model-checking
Explainability in AI & neurosymbolic reasoning
Medical diagnostic systems

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 2 / 17



Motivation

Why Sentential Decision Diagrams?

Tractable and succinct representation
Strict superset of Ordered Decision Binary Diagrams (OBBDs)
SDDs are exponentially more succinct than OBDDs [7]

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 3 / 17



Sentential Decision Diagrams

Vtrees

A vtree for a set of variables Z is a
full, rooted binary tree whose leaves
are in one-to-one correspondence
with the variables in Z [6]
A vtree dissects a total variable
order π if and only if left-to-right
traversal of the vtree visits the
variables in the same order as π

Figure 1: A chosen
vtree dissecting
order (A,B, C,D).

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 4 / 17



Sentential Decision Diagrams

X-Partitions

An X-partition [2] is a structured way to decompose a Boolean
function f with respect to a given variable set X . It is a set of pairs
(pi, si) such that f =

∨
i(pi ∧ si) where

Primes form a partition
Each prime is consistent
Every pair of distinct primes is mutually exclusive (strong
determinism)
The disjunction of all primes is valid

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 5 / 17



Sentential Decision Diagrams

Sentential Decision Diagrams

SDD is a rooted, directed acyclic graph characterized by vtrees
representing a Boolean function [2]
Nodes of the graph are either terminals or X-partitions branching
on formulas
Can be efficiently queried and combined (when not canonical)

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 6 / 17



Sentential Decision Diagrams

Example I: SDD Normalized for Left-Linear Vtree

A B

C

3

1

(a) Left-linear
vtree

⊤

1

¬C

1

3

A ¬B ¬A ⊤A B ¬A ⊥

(b) SDD representing function f

Figure 2: SDD representing f = (A ∧ B) ∨ ¬C normalized for left-linear vtree.

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 7 / 17



Sentential Decision Diagrams

Example II: SDD Normalized for Right-Linear Vtree

A

B C

1

3

(a)
Right-linear
vtree

A

3

¬A ¬C

1

B ⊤ ¬B ¬C

(b) SDD representing
function f

Figure 3: SDD representing f = (A ∧ B) ∨ ¬C normalized for right-linear
vtree.

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 8 / 17



Sentential Decision Diagrams

Compilation & Minimization Methods

SDDs can be compiled either in a bottom-up or top-down [5] manner.
Bottom-up: incremental building of the knowledge base
Top-down: facts are compiled at once

SDDs can be minimized either statically or dynamically [1].
Static minimization: construct appropriate vtree before
compilation
Dynamic minimization: adjust vtree as needed during
compilation

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 9 / 17



Library Implementation Library Overview

sddrs: Bottom-up SDD Compiler

A bottom-up SDD compiler with dynamic minimization written
in Rust1

Available as a library2 or an executable
Supports

Tractable model counting, model enumeration, equivalence
checking, and validity and consistency checking
Incremental compilation of facts into canonical SDDs
Dynamic minimization (via fragments)
Garbage collection

1https://github.com/jsfpdn/sdd-rs/
2https://crates.io/crates/sddrs

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 10 / 17

https://github.com/jsfpdn/sdd-rs/
https://crates.io/crates/sddrs


Library Implementation Library Overview

Compiler Architecture

module vtree

<<Enum>> Node

module sdd

<<Enum>> SddType

module manager

SddRefSddManager

Models

SddOptions

module literal

Literal

Polarity

Variable

module dot_writer

DotWriter <<Trait>> Dot

LiteralManager

DimacsParser
Decision

True

False

Literal

Fragment

VTreeRefLeaf

Internal

VTreeManager

Element

owns

references

implements

Legend:

Figure 4: High-level decomposition of the compiler into individual modules.
The most important structures and their relationships are presented for
each module.

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 11 / 17



Library Implementation Library Overview

Dynamic Minimization via Fragments

Figure 5: Exploration of all fragment states using swap and rotate
operations.
Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 12 / 17



Library Implementation Results

Overview of Benchmarks

Compiled datasets from the SATLIB benchmark suite [4]
Measured compilation time and size of compiled SDDs
Benchmarked various configurations of sdd-package, rsdd, and
sddrs

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 13 / 17



Library Implementation Results

Results

configuration

dataset name

uf20 uf50 uf75 gcp plan_a plan_m pigeon

sddrs-static-gc-rl 0.073 ✗ ✗ 72.140 0.149 ✗ 4.260
rsdd-comp-linear 0.002 2.030 ✗ 0.510 0.002 0.052 0.009
sdd-package-rl 0.038 12.404 2291.530 0.494 0.169 3.032 0.264

Table 1: SDD compilation times in seconds.

configuration

dataset name

uf20 uf50 uf75 gcp plan_a plan_m pigeon

sddrs-static-gc-rl 288 ✗ ✗ 69732 94 ✗ 0
rsdd-comp-linear 104 156 ✗ 5674 94 384 0
sdd-package-rl 182 187 1744 2196 136 582 0

Table 2: Sizes of compiled SDDs (sums of sizes of X-partitions).

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 14 / 17



Conclusion

Conclusion

Developed a bottom-up compiler for Sentential Decision
Diagrams, featuring dynamic minimization and garbage
collection
Designed an extensible API to support user-defined heuristics
for both dynamic minimization and garbage collection
Demonstrated the compiler’s competitive performance in specific
configurations on smaller datasets

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 15 / 17



Bibliography

Bibliography I

[1] Arthur Choi and Adnan Darwiche. “Dynamic Minimization of
Sentential Decision Diagrams”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 27.1 (June 2013),
pp. 187–194.

[2] Adnan Darwiche. “SDD: A new canonical representation of
propositional knowledge bases”. In: Twenty-Second International
Joint Conference on Artificial Intelligence. 2011.

[3] Adnan Darwiche and Pierre Marquis. “A knowledge compilation
map”. In: Journal of Artificial Intelligence Research 17 (2002),
pp. 229–264.

[4] Holger H Hoos and Thomas Stützle. “SATLIB: An online resource
for research on SAT”. In: Sat 2000 (2000), pp. 283–292.

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 16 / 17



Bibliography

Bibliography II

[5] Umut Oztok and Adnan Darwiche. “A top-down compiler for
sentential decision diagrams”. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence. 2015.

[6] Knot Pipatsrisawat and Adnan Darwiche. “New Compilation
Languages Based on Structured Decomposability.”. In: AAAI.
Vol. 8. 2008, pp. 517–522.

[7] Yexiang Xue, Arthur Choi, and Adnan Darwiche. “Basing
decisions on sentences in decision diagrams”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 26. 1. 2012,
pp. 842–849.

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 17 / 17



Library Usage

let options = options::SddOptions::builder()
.vtree_strategy(options::VTreeStrategy::RightLinear)
.garbage_collection(options::GarbageCollection::Automatic)
.variables(["A".to_string(), "B".to_string(), "C".to_string()])
.build();

let manager = SddManager::new(&options);

let a = manager.literal("A", Polarity::Positive).unwrap();
let b = manager.literal("B", Polarity::Positive).unwrap();
let n_c = manager.literal("C", Polarity::Negative).unwrap();

let a_and_b_or_nc = manager.disjoin(&manager.conjoin(&a, &b), &n_c);

let model_count = manager.model_count(&a_and_b_or_nc);
let models = manager.model_enumeration(&a_and_b_or_nc);

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 18 / 17



Binary Usage

sddrsc \
--dimacs-path ./datasets/easy.cnf \
--vtree right-linear \
--minimize-after-k-clauses 2 \
--collect-garbage \
--count-models \
--enumerate-models \
--print-statistics \
--sdd.dot

4
1 2 3 4

------------
0 1 1 1
1 0 0 1
1 1 0 1
1 1 1 1

compilation time: 148.00us
model count time: 20.00us
sdd size : 10
all sdds : 22

Josef Podaný · A Rust Library For Manipulating Sentential Decision Diagrams · February 3, 2025 19 / 17


	Motivation
	Sentential Decision Diagrams
	Library Implementation
	Library Overview
	Results

	Conclusion
	Bibliography
	Appendix

