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Linters in Theory



Linter
Linters in Theory

• In general, linters...


• analyse programs without running them


• and try to show that programs have (or have not) certain structural 
properties


• Why should we lint the source code?


• catch errors before running (or compiling) the code


• to improve readability, maintainability, efficiency, security...
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Linters in Relation to Static Analysis
Linters in Theory

• Static analysis helps with


• type checking, correctness (program adheres to a specification)


• Linting is a subset of static analysis, a branch of formal verification


• in general, checking for any (non-trivial) semantic property of a program 
is undecidable1
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1 Rice's theorem on Wikipedia

https://en.wikipedia.org/wiki/Rice's_theorem


High-Level Overview of Linting
Linters in Theory

1. Read the source code


2. Transform it into some more computer-appropriate representation


3. Evaluate the linting rules on such representation


4. Report the results to the user
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Abstract Syntax Tree
Linters in Theory

• AST is a rooted directed-acyclic graph


• AST nodes carry semantically important information about the code


• AST is a convenient abstraction; hides the clutter of the concrete syntax
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a + b * c



AST Construction
Linters in Theory

• AST can be built either from the


• derivation tree (concrete syntax tree),


• stream of lexemes.


• Various techniques to translate source code to AST depending on the 
type of grammar:


• top-down parsing: recursive descent, Pratt parsing...


• bottom-up parsing: LR, LALR, CYK...
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AST Construction: Compiler Side Note
Linters in Theory
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Linting Go Code
Linters in Go

• Actually, knowledge of the aforementioned theory is not required! :)


• The standard library does all the heavy lifting for us:


• go/token: provides lexical tokens of Go


• go/ast: provides types representing AST nodes


• go/parser: parses source code to AST


• x/tools/go/analysis: bells and whistles
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go/token
Linters in Go

• Defines basic lexical tokens of the Go language


• identifiers


• keywords


• operators (+, -, *, /, ...)


• brackets, braces, parentheses


• ... and many more


• A complete list of tokens in Go can be found here
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https://pkg.go.dev/go/token#Token


go/ast
Linters in Go

• Defines types of the AST nodes


• BlockStmt, BinaryExpr, Comment, InterfaceType...


• Convenience functions for working with ASTs, mainly ast.Walk

13



go/parser
Linters in Go

• Parser for Go source code


• Offers only 4 functions:


• ParseDir, ParseExpr, ParseExprFrom, ParseFile
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x/tools/go/analysis
Linters in Go

• Toolkit for composing individual linters


• Gives bells and whistles on top of go/{token,ast,parser} packages


• Contains interesting predefined passes2


• inspect.Analyzer: filter out the unimportant AST nodes


• Suggestions
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2 golang.org/x/tools/go/analysis/passes

http://golang.org/x/tools/go/analysis/passes


quasilyte/go-ruleguard
Linters in Go

• DSL/library for writing linting rules in Go


• Built on top of x/tools/go/analysis


• Turns out it's really expressive and convenient!
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Demo Time!
Linters in Go

• Example problem: warn about expressions in the form of '<variable> + 42'


• 3 different implementations:


1. go/{ast, token, parser} implementation


2. go/{ast, token, parser} + x/tools/go/analysis implementation


3. quasilyte/go-ruleguard implementation
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3 Complete source code available here: https://github.com/jsfpdn/linting_examples

https://github.com/jsfpdn/linting_examples


Demo Time!
Linters in Go

These are the subtrees we're looking for:
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Integrating into golangci-lint
Linters in Go

• go/analysis package must be used


• Adding a linter to golangci-lint is really easy (~200 lines including 
documentation, reference configuration and tests!4) 
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4 E.g., tagalign: https://github.com/golangci/golangci-lint/commit/
134f2e049134a96b5b137a5b376cfdae27126ea3

https://github.com/golangci/golangci-lint/commit/134f2e049134a96b5b137a5b376cfdae27126ea3
https://github.com/golangci/golangci-lint/commit/134f2e049134a96b5b137a5b376cfdae27126ea3


Bonus: Getting a Formatter "For Free"
Linters in Go

• Thanks to strict formatting rules, no maximum line length, and a great 
standard library, core gofmt functionality has (only) 594 lines!5


• Conceptually pretty simple and straightforward (IB002): "just traverse the 
(AST) tree and pretty-print it."


• Take a look at the Dart formatter for comparison6 😵💫
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5 Have a look at go/src/fmt/format.go


6 Bob Nystrom: The Hardest Program I've Ever Written. The story of Dart formatter. A great read!

https://github.com/golang/go/blob/master/src/fmt/format.go
http://journal.stuffwithstuff.com/2015/09/08/the-hardest-program-ive-ever-written/


Other Possible Approaches
Linters in Go

• Github CodeQL: https://codeql.github.com/


• Semgrep: https://semgrep.dev/docs/writing-rules/overview/
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https://codeql.github.com/
https://semgrep.dev/docs/writing-rules/overview/


Conclusion

• We have showed...


• the fundamentals of linting


• and how (relatively) easy it is to lint & analyse Go programs in Go
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Thank you for your 
attention!

Any questions?



Resources

• AST vs CST: https://eli.thegreenplace.net/2009/02/16/abstract-vs-
concrete-syntax-trees#id6


• https://lia.mg/posts/writing-go-linters/


• https://eli.thegreenplace.net/2021/rewriting-go-source-code-with-ast-
tooling/


• https://disaev.me/p/writing-useful-go-analysis-linter/

https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees#id6
https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees#id6
https://eli.thegreenplace.net/2009/02/16/abstract-vs-concrete-syntax-trees#id6
https://lia.mg/posts/writing-go-linters/
https://eli.thegreenplace.net/2021/rewriting-go-source-code-with-ast-tooling/
https://eli.thegreenplace.net/2021/rewriting-go-source-code-with-ast-tooling/
https://disaev.me/p/writing-useful-go-analysis-linter/


Resources

• https://github.com/quasilyte/go-ruleguard


• https://go-ruleguard.github.io/


• https://cheikhhseck.medium.com/create-a-linter-rule-with-go-
ruleguard-66804c3a5c9b


• https://developer20.com/custom-go-linter/


• https://arslan.io/2019/06/13/using-go-analysis-to-write-a-custom-linter/

https://github.com/quasilyte/go-ruleguard
https://go-ruleguard.github.io/
https://cheikhhseck.medium.com/create-a-linter-rule-with-go-ruleguard-66804c3a5c9b
https://cheikhhseck.medium.com/create-a-linter-rule-with-go-ruleguard-66804c3a5c9b
https://developer20.com/custom-go-linter/
https://arslan.io/2019/06/13/using-go-analysis-to-write-a-custom-linter/

