
Fuzz Testing

Fuzz Testing aka Fuzzing

“A software testing technique, which basically consists in finding
implementation bugs using malformed/semi-malformed data injection in an
automated fashion,,

“The art of automatic bug finding, and it’s role is to find software
implementation faults, and identify them if possible,,

History

● 1988 - 1990 - developed at the University of Wisconsin Madison by
Professor Barton Miller

● command-line and UI fuzzing
● http://www.cs.wisc.edu/~bart/fuzz/

http://www.cs.wisc.edu/~bart/fuzz/

Attack Types

● Combinations of: numbers, chars, metadata, pure binary sequences
○ Structured vs Unstructured
○ Black, White, Gray box

● Random vs Semi-random
○ Generation based vs Mutation based

Fuzzing Types

● Application - the attack vector is the I/O (UI, command line, etc.)

● Protocol - proxy, forget packets

● File Format - malformed samples and opens them sequentially

Advantages

● Test design is very simple, and free of preconception about the system
behaviour

● Find bugs that would be missed by a human eye
● Provides an overall picture of the robustness of the target software

Limitations

● Tend to find simple bugs
● When doing black box it is hard to evaluate the impact of found bug
● Programs with complex inputs can require much more work to produce a

smart enough fuzzer to get sufficient code coverage

Fuzzing in programming

● Great success in C/C++ - Google’s OSS-Fuzz, 50k bugs in 300+ open
source projects
○ Memory corruption

● Memory safe languages
○ Useful in discovering other security vulnerabilities
○ Java - Jazzer (integrated into OSS-Fuzz)

Fuzzing in Go

Get Started With Fuzzing in Go

● Motivation: https://github.com/golang/go/wiki/Fuzzing-trophy-case
● Since Go 1.18 (beta)
● Part of the testing package - no new dependencies needed!
● Declare in *_test.go files
● Declare as func FuzzTestName(f *testing.F) { ... }
● Run with go test (only data from /testdata)
● Can be run individually as go test -fuzz={fuzzTestName}

https://github.com/golang/go/wiki/Fuzzing-trophy-case

Structure of Fuzz Tests

Output of Fuzz Tests

~ go test -fuzz FuzzFoo

fuzz: elapsed: 0s, gathering baseline coverage: 0/192 completed

fuzz: elapsed: 0s, gathering baseline coverage: 192/192 completed, now fuzzing with 8 workers

fuzz: elapsed: 3s, execs: 325017 (108336/sec), new interesting: 11 (total: 202)

fuzz: elapsed: 6s, execs: 680218 (118402/sec), new interesting: 12 (total: 203)

fuzz: elapsed: 9s, execs: 1039901 (119895/sec), new interesting: 19 (total: 210)

fuzz: elapsed: 12s, execs: 1386684 (115594/sec), new interesting: 21 (total: 212)

PASS

ok foo 12.692s

● Coordinator schedules workers
● Workers report back to the coordinator
● Workers' main objectives:

○ Extend coverage
○ Find crashing input

● Workers do the heavy lifting
○ Repeatedly mutating & minimizing corpus
○ Running the registered fuzz targets

Inner Workings of The Fuzzing System

Corpus Generation & Structure

● Seed corpus
● Corpus generation by mutation
● Corpus minimization
● Corpus caching in $GOCACHE/fuzz
● On-disk corpus structure:

go test fuzz v1
[]byte("hello\\xbd\\xb2=\\xbc ⌘")
int64(572293)

Limitations, Shortcomings & Issues

● Only some types are accepted as fuzzing arguments
○ string, []byte, int, int8, int16, int32/rune, int64, uint, uint8/byte,

uint16, uint32, uint64, float32, float64, bool

● "Hard" to verify output - no fixed values to check against
● Sub-optimal performance (critique)
● Highest priority issues (from the issue tracker):

○ On-disk corpus not minimized (#49290)
○ Cannot fuzz multiple targets per package (#46312)

https://jayconrod.com/posts/123/internals-of-go-s-new-fuzzing-system
https://github.com/golang/go/issues?q=is%3Aissue+is%3Aopen+label%3Afuzz+milestone%3AGo1.19
https://github.com/golang/go/issues/49290
https://github.com/golang/go/issues/46312

Suggestions

● "Fuzz targets should be fast and deterministic so the fuzzing engine can
work efficiently, and new failures and code coverage can be easily
reproduced."

● "Since the fuzz target is invoked in parallel across multiple workers and in
nondeterministic order, the state of a fuzz target should not persist past the
end of each call, and the behavior of a fuzz target should not depend on
global state."

Demo

https://go.dev/blog/gopher

Useful links

● https://owasp.org/www-community/Fuzzing
● https://en.wikipedia.org/wiki/Fuzzing
● https://www.code-intelligence.com/blog/fuzzing-101-the-basics
● https://go.dev/doc/fuzz/
● https://go.dev/doc/tutorial/fuzz#installing_beta
● https://jayconrod.com/posts/123/internals-of-go-s-new-fuzzing-system
● https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md
● Official Go Fuzzing Slack channel: https://gophers.slack.com/archives/CH5KV1AKE

https://owasp.org/www-community/Fuzzing
https://en.wikipedia.org/wiki/Fuzzing
https://www.code-intelligence.com/blog/fuzzing-101-the-basics
https://go.dev/doc/fuzz/
https://go.dev/doc/tutorial/fuzz#installing_beta
https://jayconrod.com/posts/123/internals-of-go-s-new-fuzzing-system
https://go.googlesource.com/proposal/+/master/design/draft-fuzzing.md
https://gophers.slack.com/archives/CH5KV1AKE

Q&A

